

RUM API6D TOP ENTRY BALL VALVE

GDR-4 Top Entry Ball Valve

CAB-17-01

RUV TOP ENTRY BALL VALVE

ROCKY UNION

Top Entry Ball Valve

Standard ····· Page	1
Range of product ····· Page	2
Applications	2
Feature Page	3
Assembly drawing Page	6
Dynamic drawing Page	7
Transition pups ····· Page	8
Various operators Page	8
Materials	9
Structure Page	10
P-T RatingPage	11
Dimensions	12
Test procedure ····· Page	13
Fig. No. Page	14

Rocky Union is committed to enhancing our customers' working site safety, system stability, and convenient operations through our valve product offerings. Our diverse and innovative valves will have more safety design, longer working life and more reliable operation.

Located in the city with a more than forty years' history to make industrial valve, RUV has carried on the mature valve manufacturing tradition of Zigong city. By our advanced seat design and special workmanship, we are making high quality ball valve and through conduit gate valve, range from complete size and pressure for petroleum, chemical, and energy industrial use. To be a professional API6D valve company, we are making for reliability.

APPLICABLE STANDARD

The following list contains the most important applicable standards for ball valve, RUV valves will be designed, manufactured and tested in accordance with other international standards on request.

ANSI-American National Standard Institute
ASME B 1.20.1 Pipe threads, general purpose
ASME B 16.5 Steel pipe flanges and flanged fittings
ASME B16.10 Face-to-face and end-to-end dimensions
of ferrous valves.
ASME B 16.25 Butt welding ends
ASME B16.34 Steel valves-flanged and butt welding ends
ASME B16.47 Larger diameter steel flange(26" ~ 60")
ASME B31.3 Technics pipeline
ASME Boiler and Pressure Vessel Code, Section VIII,
Division 1, rules for construction of pressure vessel
MESC SPE 76/001 Surface roughness degree of flange
gasket interface
MESC SPE 77/130 Ball Valve to API SPEC. 6D
MESC SPE 77/302 Material Acceptance Requirements for
Valves in General Service
MESC SPE 77/315 Electroless Nickel Plating

British Standard

BS 1503	Pressure-containing forged parts
	(including semi finished) specification
DO CZEE	O Malua taat anatian O fina taat na muinana

- BS 6755-2 Valve test, section 2: fire test requirement specification
- BS 5351 Industrial valve, shell thickness, and bore dimension
- BS 1560 End flange dimensions and Flange gasket facing
- BS 5146 Pressure test

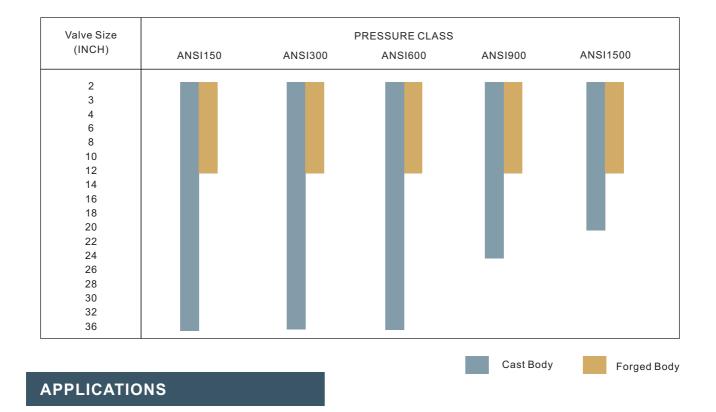
ISO9001-International Organization for Standardization

- ISO9001 Quality systems-model for quality assurance in design, development, production, installation and servicing.
- ISO15156 Materials for use in H2S containing environment in oil & gas production.
- ISO 5211-1 Executive institution accessories of quarter-turn valves, section1: flange dimension
- ISO 5211-2 Executive institution accessories of quarter-turn valves, section2: capability character of flange and connector.
- ISO 5211-3 Executive institution accessories of quarter-turn valves, section3: the dimension of drive parts
- ISO 10479 Valve test: fire-proof test requirement

ional standards on request.
API-American Petroleum Institute
API 6A Specification for wellhead valves
API 6D Specification for pipeline valves
API 6FA Specification for fire testing of valves
API 607 Fire test for soft seated quarter-turn valves
API Q1 Quality program
API 5B EUE External upset tubing threads
MSS-Manufacturers Standardization Society
MSS SP-6 Standard finishes for contact faces of pipe
flanges and connecting-end flanges of valves

- MSS SP-25 Standard marking system for valves, fittings, flanges and unions.
- MSS SP-55 Quality standard for steel castings.

and fittings.


- MSS SP-45 Bypass, and drain connections standard
- MSS SP-53 Cast steel quality standard of valve, flange, fitting and pipeline accessories --Magnetic-particle testing
- MSS SP-54 Cast steel quality standard of valve, flange, fitting and pipeline accessories ---Radiographic testing
- MSS SP-93 Cast steel and forged steel quality standard of valve, flange, fitting and pipeline accessories ---Liquid Penetrant Testing
- PrEN 12116 Industry valve, executive institution accessories of quarter-turn valves
- DEP 31.38.01.11-GEN Standard of pipeline
- DEP 31.40.70.30-GEN Quarter-turn open/close executive institution
- DEP 32.36.01.17-GEN Control valves' choice, specification and standard

NACE-National Association of Corrosion Engineers

MR0175 Sulfide stress cracking resistant metallic materials for oil field equipment (Superseded by ISO15156)

ROCKY UNION

RANGE OF PRODUCT

A wide variety of body designs, materials, and trim make RUV Top Entry Ball Valves exceptionally versatile and suitable for a multitude of liquid and gas fluid applications.

Pulp and Paper Bleaching Lines Black Liquor Green Liquor White Water Steam Chemical Recovery

Petroleum Refining

Hydrogen Cracking Steam Crude Oil Gasoline Visbreakers Naptha Sulfur

Chemicals

Chlorine Phosgene Aromatics Polymers Acids Air Separation Cauctics

Oil and Gas Production

Oil/Steam Separation Gas/Oil Gathering Systems Flowlines Wellheads

Steel/Primary Metals

Quench Lines De-Scaling Continuous Casters Steam Condensate Strippers Electro-Galvanizing

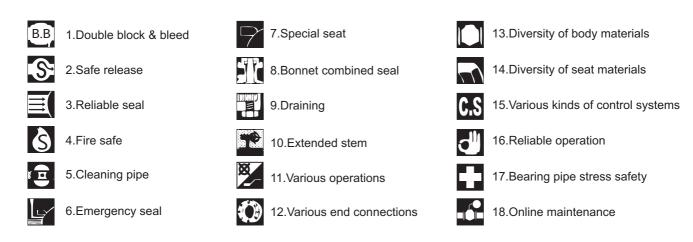
Power Generation Steam Condensate Boiler Feed Pumps Cooling Towers Service Water Recirculators River Water Intake

Petrochemicals

Ethylene Propylene Steam Reboilers Gases

ROCKY UNION

RUV TOP ENTRY BALL VALVE FEATURE

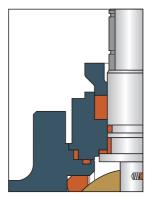

- 8" & larger valves are equipped with lifting lugs
- Trunnion supported design reduces operating torque
- Two sets of O-rings plus firesafe stem packing prevents leakage

General Design Features

Design Features

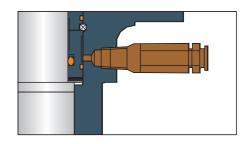
- Top entry design
- Spring energized seats
- Metal or soft seated
- Double Block and Bleed
- Full or reduced bore
- Flanged or welded ends
- Anti blow out trunnion stem design
- Corrosion resistant low friction bearing
- Sealant injection fittings for emergency stem or seal sealing
- ISO5211 Mounting pad for actuator or gear operator
- Removable stem seals under full line pressure in fully opened or closed position
- Antistatic device for grounding of the ball, stem and body
- Self lubricated bearings
- In accordance with API 6D, API 6FA, BS 6755 and NACE 01-75 (latest edition)
- One piece body design

FUNCTIONS & FEATURES

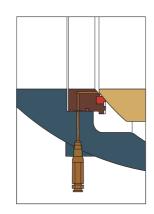


RUV TOP ENTRY BALL VALVE FEATURE

Design Features


Anti-Blowout Stem Design

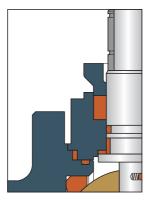
Stem seal integrity is achieved by the use of three o-rings (or two o-rings and a graphite gasket). Upper o-ring (or graphite gasket) can be replaced with the valve in line and under pressure.


Emergency Sealant Injection System

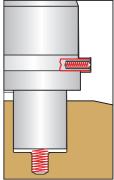
The Sealant Injection System located on the Bonnet can be utilized in case of emergencies, o-ring damage, or if stem leakage occurs.

Emergency Seat Seal

Special sealants may be injected thru fittings that are located on the adapter flanges to restore sealing integrity if damaged. A second internal check valve provides backup to the fitting.


Heavy Duty Bearings

Trunnion are supported by heavy duty Teflon coated Steel Bearings. Thrust load on the ball is supported by large trunnions mounted within captured trunnion blocks, resulting in low operating torque and seat wear.


Double Sealed Envelope Connections

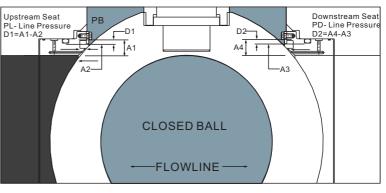
Double o-rings or a combination of an oring and fire safe gasket on body/ adapter connections to ensure positive sealing. This makes the P3 suitable for above or below ground service.

Antistatic Device

A spring between the trunnion and the ball or between the stem and the gland plate permits electrical continuity between all valve components.

TECHNICAL SEATING FEATURES

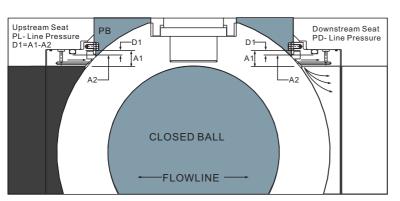
Technical Seating Features


Double Piston Seat Design

Upstream Seat:

Line Pressure acting on the seat area (A1) does not equalize against the line pressure acting on the seat area (A2). The difference in the area (D1) times the line pressure creates "piston effect" force which pushes the seat against the ball surface resulting in a tight effective seal.

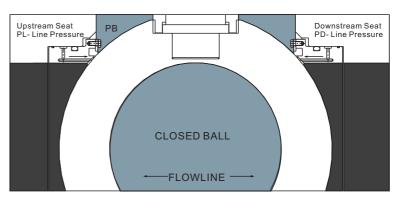
Downstream Seat:


When the body cavity pressure is greater than the downstream pressure, the body cavity pressure acts on the seal area (A4). The net pressure difference, acting over area (D2), pushes the downstream seat tightly against the ball creating a positive seal.

PB=Body Cavity Pressure

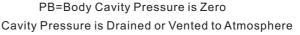
THE ULTIMATE BENEFIT OF USING THE " DOUBLE PISTON SEAT" DESIGN:

In case of upstream seat leakage, the downstream seat maintains a pressure assisted tight shut off by sealing against the ball surface.


PB=Body Cavity Pressure

Self Relieving Seat Design Upstream Seat:

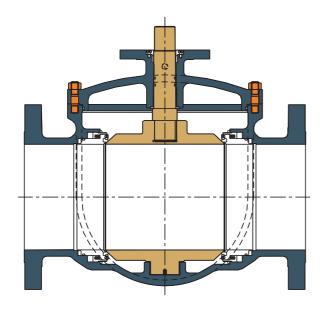
The difference in the area (D1) times the line pressure creates a "piston effect" which forces the seat against the ball surface. Also the springs behind the seat adds the force to the seat which keeps the seat in contact with the ball surface by providing the tight seal.

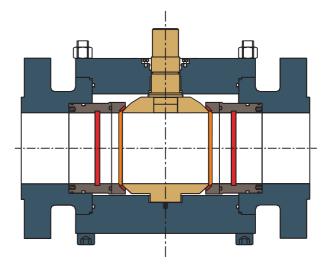

Downstream Seat:

When the body cavity pressure exceeds the spring pressure, automatic pressure relief will occur by relieving the body cavity pressure past the downstream seat. This eliminates the need for the body relief valve.

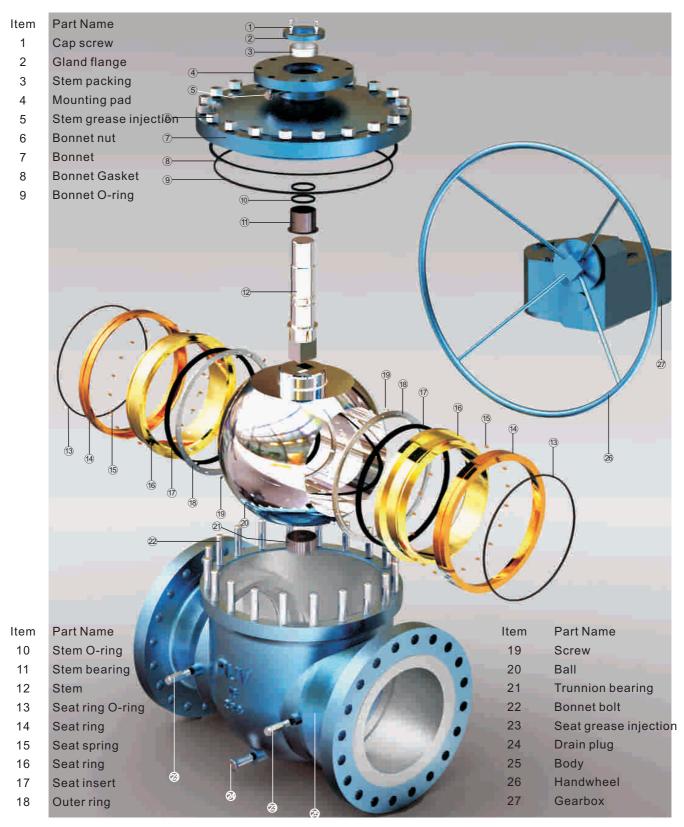
Double Block and Bleed

The double block and bleed condition is available in all seat design configurations. When the ball is in the closed position the body cavity pressure may be drained down to 'zero' by opening the bleed valve and draining the fluid by removing the drain plug. Each seat works independently assuring tight shut off seal against ball on the upstream and downstream side.


RUV TOP ENTRY BALL VALVE ASSEMBLY DRAWING

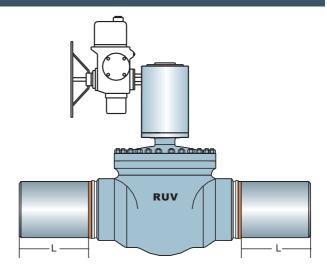

- Nominal Size (DN): 2 inches (50mm) up to 36 inches (900mm)
- Pressure Class (PN): ANSI 150 up to ANSI 1500
- Bore: full & reduced (Venturi type)
- Ends: butt weld, flanged, ring joint, butt weld by flanged
- Various configurations

Top Entry Ball Valve

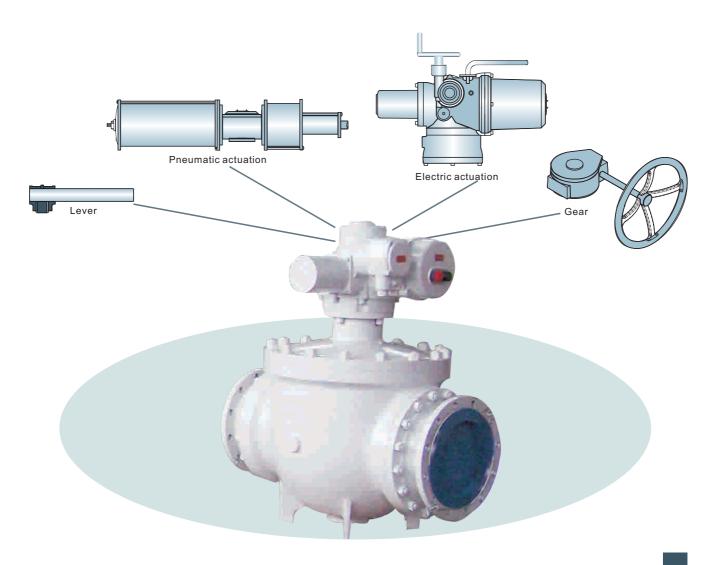


Assembly drawing

ROCKY UNION


DYNAMIC DRAWING

RUV API6D TOP ENTRY BALL VALVE



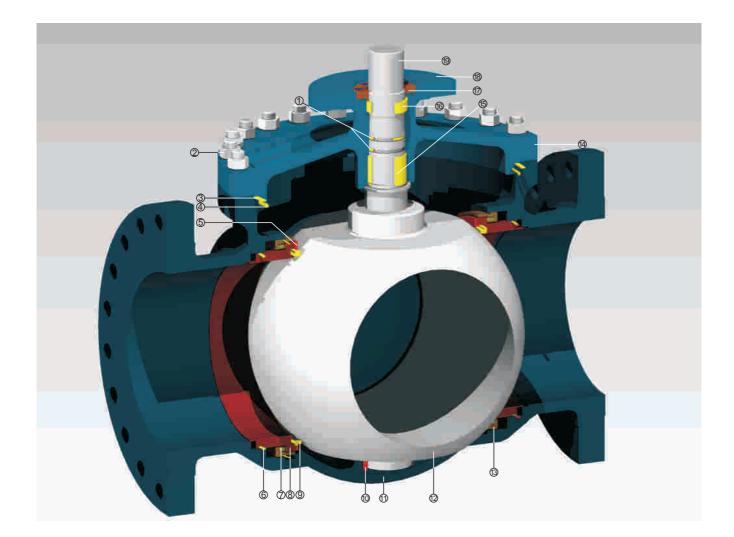
TRANSITION PUPS

The Ball Valves can be furnished with transition pups of different length to facilitate the installation of valve and piping on site in accordance with existing standards.. Also the transition pups are required for welding between the valve and the pipeline. The transition piece length L is to be specified by the customer, including wall thickness and pipe specification.

VARIOUS OPERATORS

MATERIALS FOR MAIN PARTS

MATERIALS FOR MAIN PARTS


Parts	C.S Series	NACE	S.S Seri	es NACE	LCB、LCC Series						
Pody	WCB	WCB	CF8、CF3	CF8M、CF3M	LCB、LCC						
Body	A216-WCB	A216-WCB	A135-CF8,CF3	A351-CF8M,CF3M	A352-LCB,LCC						
Packing Gland	A105	A105	A182-F304,F304L	A182-F316,F316L	A182-F304						
	A105+ENP	A105+ENP									
Ball	A105+HCr				LF2+ENP						
Dali	A182-F6a+HCr	A182-F6a+ENP	A182-F304,F304L+ENP	A182-F316,F316L+ENP	A182-F304+ENP						
	A216-WCB+HCr	A216-WCB+ENP	A351-CF8,CF3+ENP	A351-CF8M,CF3M+ENP	A352-LCB,LCC+ENP						
Stem	A182-F6a	A182-410+ENP	A182-F304,F304L	A182-F316,F316L	A182-F304						
		PTFE/PPL/NYLON/VITON/PEEK/EPDM/DEVLON									
Seat Insert	PTFE fo	or 150#, 300#; Nylor	n for 600#, 900#, 1500#,25	000#; PPL/PEEK for high te	mperature						
Seat Retainer	A105-1025+Zn	A105-1025+ENP	A182-F304,F304L	A182-F316,F316L	A182-F304						
Packing			PTFE/PPL/Graphite								
Gasket			PTFE/PPL/SS+Grap	ohite							
Bearing	PTFE/PPL										
Spring	316SS/Inconel X-750/17-4PH/35-CrMo										
Stud	A193-B7	A193-B7M	A193-B8	A193-B8M	A320-L7/L7M						
Nut	A194-2H	A194-2HM	A194-8	A194-8M	A194-7/7M						

REMARKS:

- 1. All materials conform to ASTM standard.
- 2. Materials above conform to general standard. We can apply other materials according to valve working condition or customer's requirement. We also reserve the rights to improve the valve material according to relating standard.
- 3. Zn-Galvanized ENP-Electroless Nickel Plated Hcr-Electroless Hard Chrome Plated
- 4. Under-30°C(-22°F), working condition, the valve stem need to be extended.
- 5. For NACE working requirements, spring strength ≤HRC28, body hardness≤HRC22.

ROCKY UNION

STRUCTURE

Item	Part Name	Item	Part Name	Item	Part Name
1	Stem O-ring	8	Seat ring	14	Bonnet
2	Bonnet bolt & nut	9	Seat insert	15	Stem bearing
3	Bonnet gasket	10	Trunnion bearing	16	Stem packing
4	Bonnet O-ring	11	Body	17	Gland flange
5	Outer ring	12	Ball	18	mounting pad
6	Seat ring O-ring	13	Seat ring	19	Stem
7	Seat spring				

P-T RATING

The following table indicates rated values of temperature and pressure for main materials of valves. These valves are determined according to American standard ASME/ANSI B 16.34.

То	mp.		Maximum Working Pressure																		
	mp.		150	DLb			300)Lb			400)Lb			600)Lb		900Lb			
°C	°F	A105	ASTM A182 F316			6 A105,LF2 ASTM A182 F316		A105	A1051E21		ASTM A182 F316		i,LF2	ASTM A182 F31		A105,LF2		-	TM F316		
Up to	Up to	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi
38	100	19.7	285	19	275	51	740	49.6	720	68.3	990	66.2	960	102	1480	99.3	1440	153.1	2220	148.9	2160
93	200	17.9	260	16.5	240	46.5	675	42.7	620	62.1	900	56.9	825	93.1	1350	85.5	1240	139.6	2025	128.2	1860
149	300	15.9	230	14.8	215	45.2	655	38.6	560	60.3	875	51.4	745	90.7	1315	77.2	1120	135.8	1970	115.8	1680
204	400	13.8	200	13.4	195	43.8	635	35.5	515	58.3	845	47.2	685	87.6	1270	71.0	1030	131	1900	106.2	1540
264	500	11.7	170	11.7	170	41.4	600	33.1	480	55.2	800	43.8	635	82.7	1200	65.8	955	123.8	1795	98.9	1435

Notes:

(1) Nominal P-T formula for CLASS 300 or higher pressure rating:

$$p_{t} = \frac{C_{1}S_{1}}{9750}p_{r} \leq p_{c}$$

In this formula:

 p_{t} -----Norminal working pressure, the specified materials in temperature t (bar) (psi);

 ${\it p}_{\rm c}$ -----In temperature t, the maximum pressure specified in the standard (bar) (psi);

 p_{r} ----- Nominal Pressure Rated. To Pressure \geq Class 300, p_{r} =Pressure Class Rate (for example: Class 300, p_{r} =300); C₁-----When S₁ is Mpa, C₁ is 10; when S₁ is psi, C₁ is 1;

S₁-----In temperature t, the chosen stress value of specified materials (Mpa) (psi).

(2) ASME B16.34---2004, it is including the flanged valve's nominal P-T rating in ASME B16.5---2003. In this standard, the way to fix the flanged valve's nominal P-T rating is basically similar to the ASME B16.5---2003, but it has a special pressure class formula.

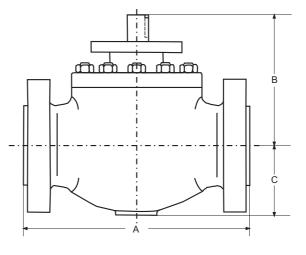
$$p_{sp} = \frac{C_2 S_2}{7000} p_r \leq p_{cb}$$

In this formula:

- p_{sp} ---- Nominal working pressure of special pressure rating, the specified materials in temperature t (bar) (psi);
- *p*_{cb}---- The Maximum Pressure of special pressure rating, in the specified temperature t according this standard (bar) (psi);
- p_r ---- Nominal Pressure rating. To Pressure ≥ Class 300, p_r =Pressure Class Rate , for example, Class 300, p_r = 300, Class 150, p_r =155, to the pressure between Class 150 to Class 300, need use Class 150 p_r =115 to replenish.
- C_2 ---- When S_2 is Mpa, C_2 is 10, when S_2 is psi, C_2 is 1;

 S_2 ---- In temperature t, the chosen stress value of specified materials (Mpa)

MAXIMUM WORKING TEMPERATURE OF SHELL MATERIALS


Materials	Standard No.	Max. Working Temperature/℃	Materials	Standard No.	Max. Working Temperature/°C
LCB	ASTM A352	340	WC6	ASTM A217	593
LC3	ASTM A352	340	WC9	ASTM A217	649
M35-1	ASTM A494	400	CF8M	ASTM A351	649
WCB	ASTM A216	425	CF8	ASTM A351	649
CN7M	ASTM A351	425	CW6M	ASTM A494	649
CF3M	ASTM A351	454	C5	ASTM A217	649
C12	ASTM A487	482	N7M	ASTM A494	649
CA6NM	ASTM A487	482	CA15	ASTM A217	704

ROCKY UNION

DIMENSIONS

Ratings: Carbon Steel

Class 150-275 p.s.i. @ 100°F-Seat PTFE + Graphite Class 300-720 p.s.i. @ 100°F-Seat PTFE + Graphite Class 600-1440 p.s.i. @ 100°F-Seat Nylon + Graphite Class 900-2160 p.s.i. @ 100°F-Seat Nylon Class 1500-3600 p.s.i. @ 100°F-Seat Nylon

Class 150-300-600-900-1500

FULL BORE-TOP ENTRY BALL VALVE Integral flanges - End to End According to API 6D Flange Dimensions to ANSI B16.5

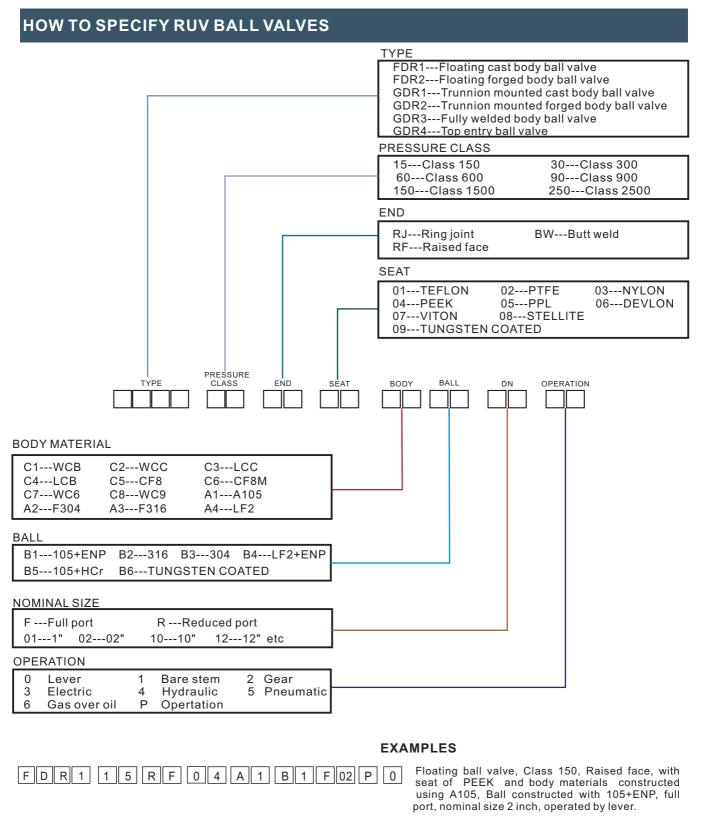
FULL BORE		DN	5	0	8	0	1	00	1:	50	20	00	2	50	30	00	35	50	4(00	4	50	5	00	5	00
FULL	BURE	IN	2	"	3	"	4	4"	6	5"	8	8" 10"		12" 14"		1"	16"		18"		20"		24"			
			mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.								
Class 1	50	А	178	11.5	203	14.0	229	17.0	394	22.0	457	26.0	533	31.0	610	24.0	686	27.0	762	30.0	864	34.0	914	36.6	1067	42.0
Class 3	00	А	216	11.5	283	14.0	305	17.0	403	22.0	502	26.0	568	31.0	648	25.5	762	30.0	838	33.0	914	36.0	991	39.0	1143	45.0
Class 6	00	А	292	11.5	356	14.0	432	17.0	559	22.0	660	26.0	787	31.0	838	33.0	889	35.0	991	39.0	1092	43.0	1194	47.0	1397	55.0
Class 9	00	А	371	14.6	384	15.1	460	18	613	24.0	740	29.0	841	33.0	968	38.0	1038	40.5	1140	44.5	1232	48.0	1334	52.0	1568	62.0
Class 1	500	А	371	14.6	473	18.6	549	21.6	711	28.0	841	32.7	1000	39.0	1146	44.5	1276	49.5	1407	54.5	-	-	-	-	-	-
	Class 150	В	142	5.6	142	5.6	219	8.6	202	7.9	295	11.6	338	13.3	460	18.11	480	18.9	540	21.2	580	22.8	715	28.1	780	30.7
	Class 300	В	142	5.6	142	5.6	219	8.6	202	7.9	295	11.6	338	13.3	465	18.3	545	21.4	600	23.6	620	24.4	734	28.9	780	30.7
Center to Top	Class 600	В	174	6.9	205	8.1	276	10.8	338	13.3	409	16	469	18.5	440	17.3	505	19.9	590	23.2	700	27.5	775	30.5	840	33.1
	Class 900	В	221	8.7	240	9.4	294	11.6	366	14.4	417	16.4	480	18.9	438	17.2	545	21.4	650	25.6	675	26.6	790	31.1	915	36.0
	Class 1500	В	221	8.7	297	11.7	330	13.0	414	16.3	437	17.2	502	19.8	533	21.0	626	24.6	725	28.5	-	-	-	-	-	-
	Class 150	С	105	4.1	105	4.1	151	5.9	184	7.3	274	10.8	318	12.5	310	12.2	340	13.4	385	15.2	428	16.8	545	21.5	655	25.8
Contonto	Class 300	С	105	4.1	105	4.1	151	5.9	184	7.3	274	10.8	318	12.5	325	12.8	430	16.9	470	18.5	510	20.1	500	19.7	600	23.6
Center to Bottom	Class 600	С	123	4.8	148	5.8	178	7.0	242	9.5	310	12.2	363	14.3	320	12.6	340	13.4	410	16.1	445	17.5	510	20.1	640	25.2
	Class 900	С	163	6.4	170	6.7	201	7.9	300	11.8	310	12.2	363	14.3	410	16.1	370	14.6	420	16.5	417	24.3	725	28.5	831	32.7
	Class 1500	С	163	6.4	200	7.8	247	9.7	329	13.0	340	13.4	381	15.0	438	17.2	498	19.6	460	18.1	-	-	-	-	-	-

Class 150-300-600-900-1500

FULL BORE-TOP ENTRY BALL VALVE Integral flanges - End to End According to API 6D Flange Dimensions to ANSI B16.5

REDUCED BORE		DN	80	*50	100	*80	150	*100	200	*150	250	*200	300	*250	350	*300	400'	*350	4503	*400	500*	450	600*	550
		IN	3"*2" 4"*3"		*3"	6"*4"		8"*6"		10	10"*8" 1		12"*10"		14"*12"		16"*12"		*14"	20"*16"		24"*20"		
			mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.
Class 1	50	Α	203	11.1	229	12.0	394	15.5	457	18.0	533	21.0	610	24.0	686	27.0	762	30.0	864	34.0	914	36.6	1067	42.0
Class 30	00	А	283	11.1	305	12.0	403	15.9	502	19.7	568	22.4	648	25.5	762	30.0	838	32.9	914	35.9	991	39.0	1143	45.0
Class 60	00	А	356	14.0	432	17.0	559	22.0	660	26.0	787	31.0	838	33.0	889	35.0	991	39.0	1092	43.0	1194	47.0	1397	55.0
Class 90	00	Α	384	15.1	460	18.1	613	24.1	740	29.1	841	33.1	968	38.0	1038	40.5	1140	44.5	1230	48.0	1334	52.0	1568	61.9
Class 1	500	Α	473	16.3	549	21.6	711	28.0	841	33.1	1000	39.0	1146	44.5	1276	49.5	1407	54.5	-	-	-	-	-	-
	Class 150	В	142	5.6	195	7.7	219	8.6	202	7.9	295	10.2	338	13.3	460	18.1	480	18.9	540	21.3	580	22.8	715	28.1
Conton	Class 300	В	142	5.6	195	7.7	219	8.6	202	7.9	295	10.2	338	13.3	465	18.3	545	21.5	600	23.6	620	24.4	734	28.9
Center to Top	Class 600	В	174	6.9	205	8.1	276	10.8	338	13.3	409	16.1	469	18.5	440	17.3	505	19.9	590	23.2	700	27.6	775	31.5
	Class 900	В	221	8.7	240	9.4	294	11.6	366	14.4	417	16.4	480	18.9	438	17.2	540	21.5	650	25.6	675	26.7	790	31.1
	Class 1500	В	221	8.7	297	11.7	330	13.0	414	16.3	437	17.2	502	19.8	533	21.0	626	24.6	-	-	-	-	-	-
	Class 150	С	105	4.1	125	4.9	151	5.9	184	7.3	274	10.8	318	12.5	310	12.2	340	13.4	385	15.2	428	16.9	545	21.5
Contorto	Class 300	С	105	4.1	125	4.9	151	5.9	184	7.3	274	10.8	318	12.5	325	12.8	430	16.9	470	18.5	510	20.1	500	19.7
Center to Bottom	Class 600	С	123	4.8	148	5.8	178	7.0	242	9.5	310	12.2	363	14.3	320	12.6	340	13.4	410	16.1	445	17.5	510	20.1
	Class 900	С	163	6.4	170	6.7	201	7.9	300	11.8	310	12.2	363	14.3	410	16.1	370	14.6	420	16.5	617	24.3	725	28.5
	Class 1500	С	163	6.4	200	7.8	247	9.7	329	13.0	340	13.4	381	15.0	438	17.2	498	19.6	-	-	-	-	-	-

For detail of larger size and pressure, please contact to RUV technical department.


TEST PROCEDURE

ROCKY UNION TOP ENTRY BALL VALVE TEST PROCEDURE

HYD	ROSTATIC SEAI	TES	T API6D	10.3 and 1	0.4					
5	Sequence	Are	a Pressure	Duratio	on(min)	Description				
	B	А	1.5x PN	6 " -10 "	5	 Valve in partial open. Set the pressure to 150% PN. 				
SHELL TEST			1.5xPN	12 " -18 "	15	 Reduce the pressure to 50% PN. Reset the pressure to 150% PN. 				
	В	С	1.5xPN	20 " -60 "	30	5. Hold the pressure for the duration of testing.				
	В	A	1.1xPN							
	A C C	В	Atmospheric		5	Seat hydro seal test at A end toawrds body B				
	В	С	Atmospheric							
SEAT	В	A	Atmospheric							
TEST	A () C	В	Atmospheric		5	Seat hydro seal test at C end toawrds body B				
1201	B	С	1.1xPN							
	В	A	1.1xPN							
	A () C	В	Atmospheric		5	Seat hydro seal test for both A and C DBB				
	В	С	1.1xPN							
AIR	SEAL TEST	API6	D 10.4							
	В	A	Atmospheric							
	A C	В	Atmospheric	eric 5		Seat air seal test at A end toawrds body B				
SEAT	В	С	80PSIG(5.5bar)							
TEST	В	A	80PSIG(5.5bar)							
	A C	В	80PSIG(5.5bar)			Seat air seal test at C end toawrds body B				
	В	С	Atmospheric							

PN=Nominal Pressure Green=Liquid Red=Air

G D R 4 6 0 R F 0 2 C 1 B 3 F 08 P 2

Top entry ball valve, Class 600, Raised face, with seat of PTFE and body materials constructed using WCB, Ball constructed with materials of 304, Full port, nominal size 8 inch, operated by gearbox.

WE MAKE FOR RELIABILITY ROCKY UNION VALVE CO.,LTD

Address: Chuannan SME Incubator, Bancang Industrial Park Hi-Tech Development Area Zigong City, Sichuan People's Republic of China Tel:+86-813-5536058 Fax:+86-813-5519412 E-mail: sales@rockyunion.com rockyvalve@163.com Website: www.rockyunion.com

Special Statement

ROCKY UNION is always committed to provide high quality products and efficient service to our customers, At the same time, we have always strictly abided by the provisions of the state; abided by the relevant international rules. And we also abide by the business and professional ethics, making effort to providing employees safety, healthy, environmental work environment.