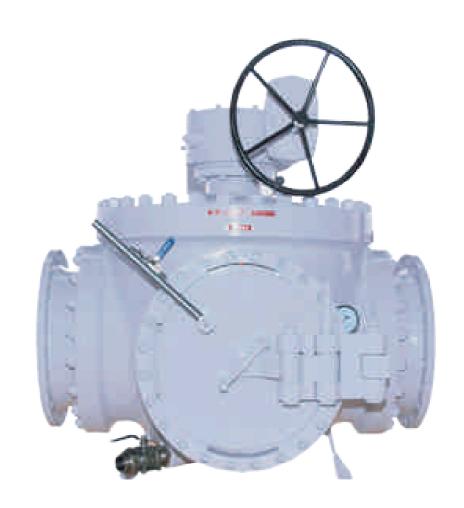


API6D PIG BALL VALVE

GDR-5 Pig Ball Valve / Pipeline Luncher and Receiver

CAB-17-01



RUV PIG BALL VALVE

Pig Ball Valve

Standard ·····	····· Page	1
Range of product ·····	····· Page	2
Applications ······	·····Page	2
Feature·····	····· Page	3
Operating procedure	·····Page	6
Assembly drawing	····· Page	7
Dynamic drawing	Page	8
Various operators	·····Page	9
Materials ······	·····Page	10
Structure	Page	11
P-T Rating ·····	·····Page	12
Test procedure ······	····· Page	13
Fig. No	····· Page	14

Rocky Union is committed to enhancing our customers' working site safety, system stability, and convenient operations through our valve product offerings. Our diverse and innovative valves will have more safety design, longer working life and more reliable operation.

Located in the city with a more than forty years' history to make industrial valve, RUV has carried on the mature valve manufacturing tradition of Zigong city. By our advanced seat design and special workmanship, we are making high quality ball valve, through conduit gate valve and pigging valve, range from complete size and pressure for petroleum, chemical, and energy industrial use. To be a professional API6D valve company, we are making for reliability.

API-American Petroleum Institute

APPLICABLE STANDARD

ANSI-American National Standard Institute

valves, section3: the dimension of drive parts

ISO 10479 Valve test: fire-proof test requirement

The following list contains the most important applicable standards for ball valve, RUV valves will be designed, manufactured and tested in accordance with other international standards on request.


ANSI-American National Standard Institute	API-American Petroleum Institute
ASME B 1.20.1 Pipe threads, general purpose	API 6A Specification for wellhead valves
ASME B 16.5 Steel pipe flanges and flanged fittings	API 6D Specification for pipeline valves
ASME B16.10 Face-to-face and end-to-end dimensions	API 6FA Specification for fire testing of valves
of ferrous valves.	API 607 Fire test for soft seated quarter-turn valves
ASME B 16.25 Butt welding ends	API Q1 Quality program
ASME B16.34 Steel valves-flanged and butt welding ends	
ASME B16.47 Larger diameter steel flange(26" ~ 60")	API 5B EUE External upset tubing threads
ASME B31.3 Technics pipeline	
ASME Boiler and Pressure Vessel Code, Section VIII,	
Division 1, rules for construction of pressure vessel	MSS-Manufacturers Standardization Society
MESC SPE 76/001 Surface roughness degree of flange	MSS SP-6 Standard finishes for contact faces of pipe
gasket interface	flanges and connecting-end flanges of valves
MESC SPE 77/130 Ball Valve to API SPEC. 6D	and fittings.
MESC SPE 77/302 Material Acceptance Requirements for	MSS SP-25 Standard marking system for valves, fittings,
Valves in General Service	flanges and unions.
MESC SPE 77/315 Electroless Nickel Plating	MSS SP-55 Quality standard for steel castings.
	MSS SP-45 Bypass, and drain connections standard
	MSS SP-53 Cast steel quality standard of valve, flange,
British Standard	fitting and pipeline accessories
BS 1503 Pressure-containing forged parts	Magnetic-particle testing
(including semi finished) specification	MSS SP-54 Cast steel quality standard of valve, flange,
BS 6755-2 Valve test, section 2: fire test requirement specifi-	fitting and pipeline accessoriesRadiographic
cation	
BS 5351 Industrial valve, shell thickness, and bore dimension	testing
BS 1560 End flange dimensions and Flange gasket facing	MSS SP-93 Cast steel and forged steel quality standard
BS 5146 Pressure test	of valve, flange, fitting and pipeline accessories
	Liquid Penetrant Testing
ISO9001-International Organization for Standardization	
ISO9001 Quality systems-model for quality assurance in	
design, development, production, installation	PrEN 12116 Industry valve, executive institution accessories
and servicing.	of quarter-turn valves
ISO15156 Materials for use in H2S containing environment	DEP 31.38.01.11-GEN Standard of pipeline
in oil & gas production.	DEP 31.40.70.30-GEN Quarter-turn open/close executive
ISO 5211-1 Executive institution accessories of quarter-turn	institution
valves, section1: flange dimension	DEP 32.36.01.17-GEN Control valves' choice, specification
ISO 5211-2 Executive institution accessories of quarter-turn	and standard
valves, section2: capability character of flange	
and connector.	
ISO 5211-3 Executive institution accessories of quarter-turn	NACE-National Association of Corrosion Engineers

MR0175 Sulfide stress cracking resistant metallic materials for

oil field equipment (Superseded by ISO15156)

RANGE OF PRODUCT

APPLICATIONS

A wide variety of body designs, materials, and trim make RUV Pig Ball Valves exceptionally versatile and suitable for a multitude of liquid and gas fluid applications.

Petroleum Refining Hydrogen Cracking Steam Crude Oil Gasoline Visbreakers Naptha

Sulfur

Pulp and Paper Bleaching Lines Black Liquor Green Liquor White Water Steam **Chemical Recovery**

Power Generation

Steam Condensate **Boiler Feed Pumps Cooling Towers** Service Water Recirculators River Water Intake

Chemicals

Chlorine Phosgene Aromatics Polymers Acids Air Separation Cauctics

Petrochemicals

Ethylene Propylene Steam Reboilers Gases

Oil and Gas Production

Forged Body

Oil/Steam Separation Gas/Oil Gathering Systems Flowlines Wellheads

Steel/Primary Metals

Quench Lines De-Scaling Continuous Casters Steam Condensate Strippers Electro-Galvanizing

RUV PIG BALL VALVE FEATURE

General Design Features

Design Features

- Spring energized seats
- Metal or soft seated
- Double Block and Bleed
- Full or reduced bore
- Flanged or welded ends
- Anti blow out trunnion stem design
- Corrosion resistant low friction bearing
- Sealant injection fittings for emergency stem or seal sealing
- ISO5211 Mounting pad for actuator or gear operator
- Removable stem seals under full line pressure in fully opened or closed position
- Antistatic device for grounding of the ball, stem and body
- Self lubricated bearings
- In accordance with API 6D, API 6FA, BS 6755 and NACE 01-75 (latest edition)
- One piece body design
- Trunnion supported design reduces operating torque
- 8" & larger valves are equipped with lifting lugs
- Trunnion supported design reduces operating torque
- Two sets of O-rings plus firesafe stem packing prevents leakage
- Reduced space requirements compared to fabricated pig launchers.
- Launching/ receiving operation is a safe, quickly performed operation.
- Pig cage is installed in the ball for all shut-off style valves and in the body for the bypass style reciever

FUNCTIONS & FEATURES

1.Double block & bleed

2.Safe release

3.Reliable seal

4.Fire safe

5.Cleaning pipe

6.Emergency seal

7.Special seat

8.Bonnet combined seal

9.Draining

10.Extended stem

11. Various operations

12. Various end connections

13. Diversity of body materials

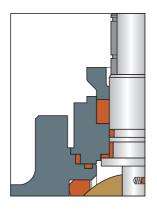
14. Diversity of seat materials

15. Various kinds of control systems

16.Reliable operation

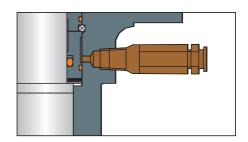
17.Bearing pipe stress safety

18.Online maintenance

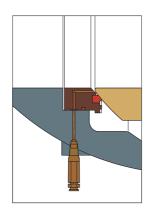


RUV PIG BALL VALVE FEATURE

Design Features


Anti-Blowout Stem Design

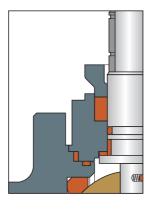
Stem seal integrity is achieved by the use of three o-rings (or two o-rings and a graphite gasket). Upper o-ring (or graphite gasket) can be replaced with the valve in line and under pressure.


Emergency Sealant Injection System

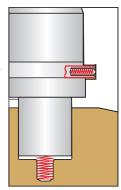
The Sealant Injection System located on the Bonnet can be utilized in case of emergencies, o-ring damage, or if stem leakage occurs.

Emergency Seat Seal

Special sealants may be injected thru fittings that are located on the adapter flanges to restore sealing integrity if damaged. A second internal check valve provides backup to the fitting.


Heavy Duty Bearings

Trunnion are supported by heavy duty Teflon coated Steel Bearings. Thrust load on the ball is supported by large trunnions mounted within captured trunnion blocks, resulting in low operating torque and seat wear.


Double Sealed Envelope Connections

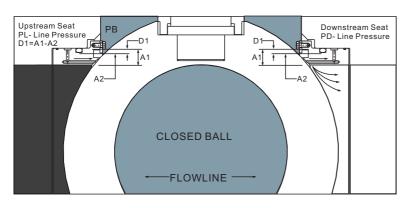
Double o-rings or a combination of an oring and fire safe gasket on body/ adapter connections to ensure positive sealing. This makes the P3 suitable for above or below ground service.

Antistatic Device

A spring between the trunnion and the ball or between the stem and the gland plate permits electrical continuity between all valve components.

TECHNICAL SEATING FEATURES

Technical Seating Features


Double Piston Seat Design

Upstream Seat:

Line Pressure acting on the seat area (A1) does not equalize against the line pressure acting on the seat area (A2). The difference in the area (D1) times the line pressure creates "piston effect" force which pushes the seat against the ball surface resulting in a tight effective seal.

Downstream Seat:

When the body cavity pressure is greater than the downstream pressure, the body cavity pressure acts on the seal area (A4). The net pressure difference, acting over area (D2), pushes the downstream seat tightly against the ball creating a positive seal.

PB=Body Cavity Pressure

Upstream Seat Downstream Seat PL- Line Pressure D1=A1-A2 PD- Line Pressure D2=A4-A3 -D1 **CLOSED BALL** FLOWLINE -

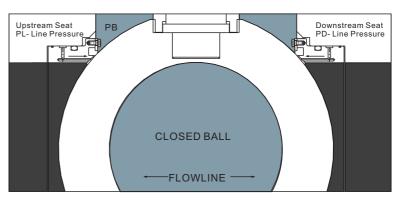
PB=Body Cavity Pressure

THE ULTIMATE BENEFIT OF USING THE " **DOUBLE PISTON SEAT" DESIGN:**

In case of upstream seat leakage, the downstream seat maintains a pressure assisted tight shut off by sealing against the ball surface.

Self Relieving Seat Design

Upstream Seat:


The difference in the area (D1) times the line pressure creates a "piston effect" which forces the seat against the ball surface. Also the springs behind the seat adds the force to the seat which keeps the seat in contact with the ball surface by providing the tight seal.

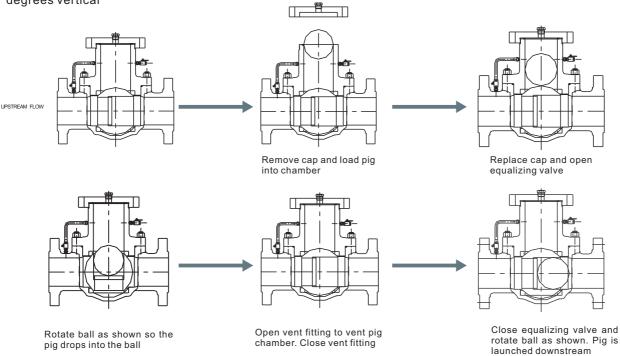
Downstream Seat:

When the body cavity pressure exceeds the spring pressure, automatic pressure relief will occur by relieving the body cavity pressure past the downstream seat. This eliminates the need for the body relief valve.

Double Block and Bleed

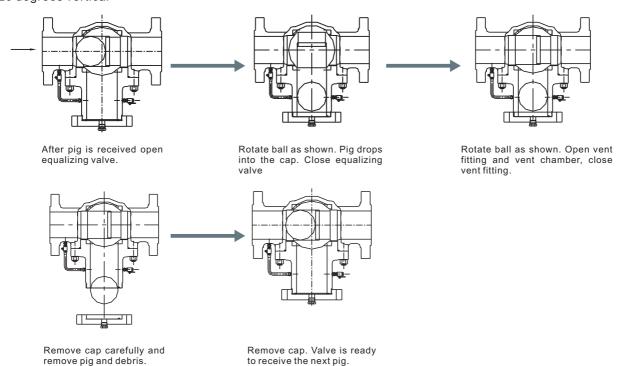
The double block and bleed condition is available in all seat design configurations. When the ball is in the closed position the body cavity pressure may be drained down to 'zero' by opening the bleed valve and draining the fluid by removing the drain plug. Each seat works independently assuring tight shut off seal against ball on the upstream and downstream side.

PB=Body Cavity Pressure is Zero Cavity Pressure is Drained or Vented to Atmosphere



PIG LAUNCHING & RECEIVING SEQUENCE

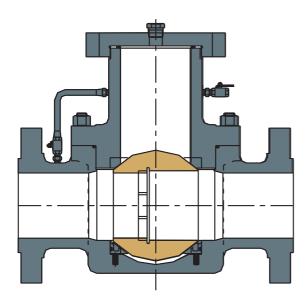
OPERATING PROCEDURES

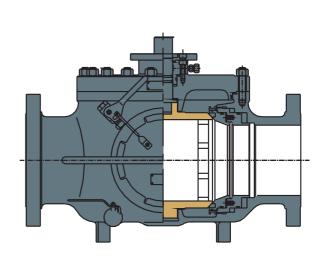

LAUNCHING

The launching valve is installed in the flow line with the pig chamber facing vertically upward within a maximum of 20 degrees vertical

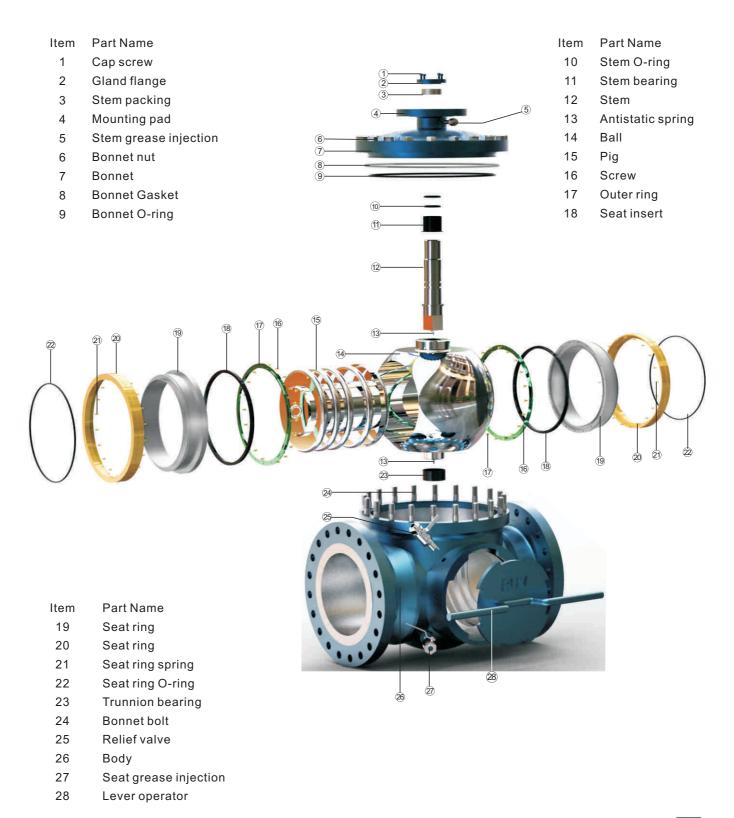
RECEIVING

The receiving valve is installed in the flow line with the pig chamber facing vertically download within a maximum of 20 degrees vertical

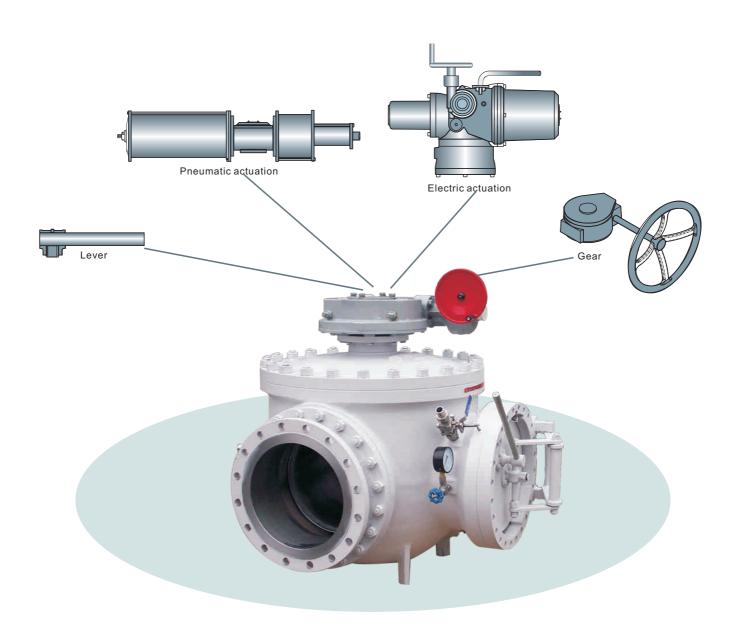

RUV PIG BALL VALVE ASSEMBLY DRAWING


- Nominal Size (DN): 2 inches (50mm) up to 36 inches (900mm)
- Pressure Class (PN): ANSI 150 up to ANSI 1500
- Bore: full & reduced (Venturi type)
- ●Ends: butt weld, flanged, ring joint, butt weld by flanged
- Various configurations

Pig Ball Valve



Assembly drawing

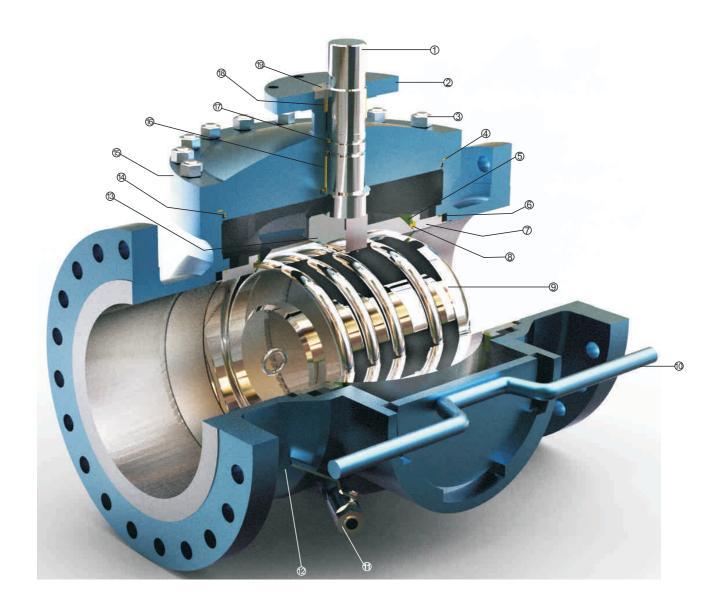

DYNAMIC DRAWING

RUV API6D PIG BALL VALVE

VARIOUS OPERATORS

MATERIALS FOR MAIN PARTS

MATERIALS FOR MAIN PARTS


Parts	C.S Series	C.S Series NACE S.S Series NACE								
Pody	WCB	WCB	CF8、CF3	CF8M、CF3M	LCB、LCC					
Body	A216-WCB	A216-WCB	A135-CF8,CF3	A351-CF8M,CF3M	A352-LCB,LCC					
Packing Gland	A105-1025	A105-1025	A182-F304,F304L	A182-F316,F316L	A182-F304					
	A105+ENP									
Ball	A105+HCr									
Dali	A182-F6a+HCr	A182-F6a+ENP	A182-F304,F304L+ENP	A182-F316,F316L+ENP	A182-F304+ENP					
	A216-WCB+HCr	A216-WCB+ENP	A351-CF8,CF3+ENP	A351-CF8M,CF3M+ENP	A352-LCB,LCC+ENP					
Stem	A182-F6a	A182-410+ENP	A182-F304,F304L	A182-F316,F316L	A182-F304					
Cook Images	PTFE/PPL/NYLON/VITON/PEEK/EPDM/DEVLON									
Seat Insert	PTFE fo	or 150#, 300#; Nylor	o for 600#, 900#, 1500#,25	00#; PPL/PEEK for high te	mperature					
Seat Retainer	A105-1025+Zn	A105-1025+ENP	A182-F304,F304L	A182-F316,F316L	A182-F304					
Packing	PTFE/PPL/Graphite									
Gasket	PTFE/PPL/Graphite									
Bearing	PTFE/PPL									
Spring			316SS/Inconel X-750/17-4P	H/35-CrMo						
Stud	A193-B7	A193-B7M	A193-B8,B8M	A193-B8,B8M	A320-L7					
Nut	A194-2H	A194-2HM	A194-8,8M	A194-8,8M	A194-7M					

REMARKS:

- 1. All materials conform to ASTM standard.
- 2. Materials above conform to general standard. We can apply other materials according to valve working condition or customer's requirement. We also reserve the rights to improve the valve material according to relating standard.
- **ENP-Electroless Nickel Plated** Hcr-Electroless Hard Chrome Plated 3. Zn-Galvanized
- 4. Under-30°C(-22°F), working condition, the valve stem need to be extended.
- 5. For NACE working requirements, spring strength \leq HRC28, body hardness \leq HRC22.

STRUCTURE

Item	Part Name	Item	Part Name	Item	Part Name
1	Stem	8	Seatinsert	14	Bonnet O-ring
2	Mounting pad	9	Pig	15	Bonnet
3	Bonnet bolt & nut	10	Lever operator	16	Stem bearing
4	Bonnet gasket	11	Seat grease injection	17	Stem O-ring
5	Seat ring	12	Body	18	Stem gasket
6	Seat ring o-ring	13	Ball	19	Gland flange
7	Seat ring				

P-T RATING

The following table indicates rated values of temperature and pressure for main materials of valves. These valves are determined according to American standard ASME/ANSI B 16.34.

Та	mp.	Maximum Working Pressure																			
16	πp.	150Lb 300Lb					400Lb					600Lb			900Lb						
$^{\circ}\mathbb{C}$	°F	A105	i,LF2	AS A182	TM F316	A105	,LF2	AS A182		A105	,LF2	AS A182		A105	i,LF2	AS A182	TM F316	A105	5,LF2		TM F316
Up to	Up to	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi
38	100	19.7	285	19	275	51	740	49.6	720	68.3	990	66.2	960	102	1480	99.3	1440	153.1	2220	148.9	2160
93	200	17.9	260	16.5	240	46.5	675	42.7	620	62.1	900	56.9	825	93.1	1350	85.5	1240	139.6	2025	128.2	1860
149	300	15.9	230	14.8	215	45.2	655	38.6	560	60.3	875	51.4	745	90.7	1315	77.2	1120	135.8	1970	115.8	1680
204	400	13.8	200	13.4	195	43.8	635	35.5	515	58.3	845	47.2	685	87.6	1270	71.0	1030	131	1900	106.2	1540
264	500	11.7	170	11.7	170	41.4	600	33.1	480	55.2	800	43.8	635	82.7	1200	65.8	955	123.8	1795	98.9	1435

Notes:

(1) Nominal P-T formula for CLASS 300 or higher pressure rating:

$$p_{t} = \frac{C_{1}S_{1}}{9750}p_{r} \leq p_{c}$$

In this formula:

 p_{t} ----Norminal working pressure, the specified materials in temperature t (bar) (psi);

 p_c ----In temperature t, the maximum pressure specified in the standard (bar) (psi);

 p_r ----- Nominal Pressure Rated. To Pressure \geq Class 300, p_r =Pressure Class Rate (for example: Class 300, p_r =300);

 C_1 -----When S_1 is Mpa, C_1 is 10; when S_1 is psi, C_1 is 1;

S₁-----In temperature t, the chosen stress value of specified materials (Mpa) (psi).

(2) ASME B16.34---2004, it is including the flanged valve's nominal P-T rating in ASME B16.5---2003. In this standard, the way to fix the flanged valve's nominal P-T rating is basically similar to the ASME B16.5---2003, but it has a special pressure class formula.

 $\rho_{\rm sp} = \frac{C_{\rm 2}S_{\rm 2}}{7000} \rho_{\rm r} \leqslant \rho_{\rm cb}$

 $p_{\rm sn}$ ---- Nominal working pressure of special pressure rating, the specified materials in temperature t (bar) (psi);

 $p_{\rm ch}$ ---- The Maximum Pressure of special pressure rating, in the specified temperature t according this standard

 p_r ---- Nominal Pressure rating. To Pressure \geq Class 300, p_r =Pressure Class Rate, for example, Class 300, p_r = 300, Class 150, p_r =155, to the pressure between Class 150 to Class 300, need use Class 150 p_r =115 to replenish.

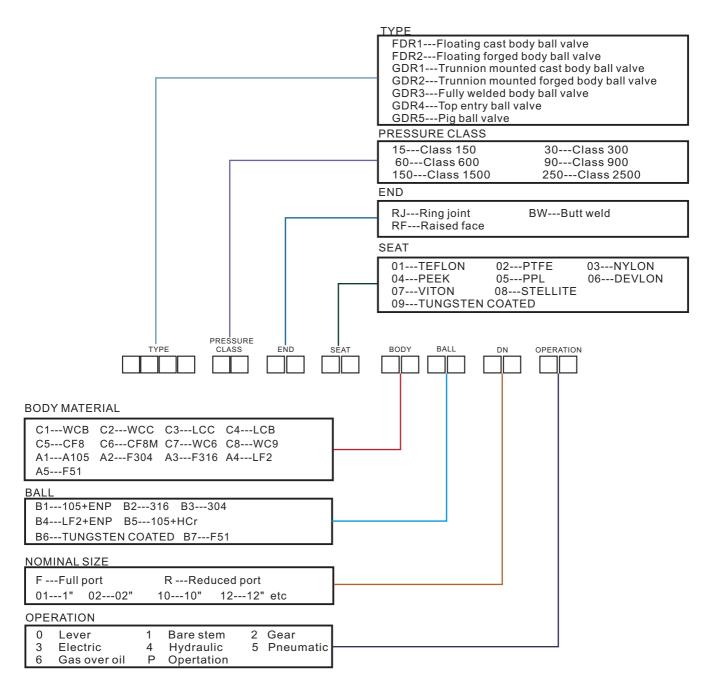
 C_2 ---- When S_2 is Mpa, C_2 is 10, when S_2 is psi, C_2 is 1;

S₂---- In temperature t, the chosen stress value of specified materials (Mpa)

MAXIMUM WORKING TEMPERATURE OF SHELL MATERIALS

Materials	Standard No.	Max. Working Temperature/℃	Materials	Standard No.	Max. Working Temperature/℃
LCB	ASTM A352	340	WC6	ASTM A217	593
LC3	ASTM A352	340	WC9	ASTM A217	649
M35-1	ASTM A494	400	CF8M	ASTM A351	649
WCB	ASTM A216	425	CF8	ASTM A351	649
CN7M	ASTM A351	425	CW6M	ASTM A494	649
CF3M	ASTM A351	454	C5	ASTM A217	649
C12	ASTM A487	482	N7M	ASTM A494	649
CA6NM	ASTM A487	482	CA15	ASTM A217	704

TEST PROCEDURE


ROCKY UNION PIG BALL VALVE TEST PROCEDURE

HYDROSTATIC SEAL TEST API6D 10.3 and 10.4									
	Sequence	Are	Area Pressure Duration(min)			Description			
	В	А	1.5x PN	6 " -10 "	5	Valve in partial open. Set the pressure to 150% PN.			
SHELL	A () C	В	1.5xPN	12 " -18 "	15	3. Reduce the pressure to 50% PN. 4. Reset the pressure to 150% PN.			
	В	С	1.5xPN	20 " -60 "	30	5. Hold the pressure for the duration of testing.			
	В	Α	1.1xPN						
	A	В	Atmospheric		5	Seat hydro seal test at A end toawrds body B			
	В	С	Atmospheric						
SEAT	В	А	Atmospheric						
	TEST A C	В	Atmospheric	5		Seat hydro seal test at C end toawrds body B			
ILOI		С	1.1xPN						
	В	Α	1.1xPN						
	A	В	Atmospheric		5	Seat hydro seal test for both A and C DBB			
	В	С	1.1xPN						
AIR	SEAL TEST	API6	D 10.4						
	В	А	Atmospheric						
	A () C	В	Atmospheric	5		Seat air seal test at A end toawrds body B			
SEAT	В	С	80PSIG(5.5bar)						
TEST	В	Α	80PSIG(5.5bar)						
	A	В	80PSIG(5.5bar)	5		Seat air seal test at C end toawrds body B			
	В	С	Atmospheric						

PN=Nominal Pressure Blue=Liquid Yellow=Air

HOW TO SPECIFY RUV BALL VALVES

EXAMPLES

| F | D | R | 1 | 1 | 5 | R | F | 0 | 4 | A | 1 | B | 1 | F | 02 | P | 0 |

Floating ball valve, Class 150, Raised face, with seat of PEEK and body materials constructed using A105, Ball constructed with 105+ENP, full port, nominal size 2 inch, operated by lever.

G D R 5 6 0 R F 0 2 C 1 B 3 F 08 P 2

Pig ball valve, Class 600, Raised face, with seat of PTFE and body materials constructed using WCB, Ball constructed with materials of 304, Full port, nominal size 8 inch, operated by gearbox.

WE MAKE FOR RELIABILITY ROCKY UNION VALVE CO.,LTD

Address: Chuannan SME Incubator, Bancang Industrial Park Hi-Tech Development Area Zigong City, Sichuan People's Republic of China Tel:+86-813-5536058 Fax:+86-813-5519412

E-mail: sales@rockyunion.com rockyvalve@163.com Website: www.rockyunion.com

Special Statement

ROCKY UNION is always committed to provide high quality products and efficient service to our customers, At the same time, we have always strictly abided by the provisions of the state; abided by the relevant international rules. And we also abide by the business and professional ethics, making effort to providing employees safety, healthy, environmental work environment.